KAKINADA – 533 003, Andhra Pradesh, India ## **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** # **COURSE STRUCTURE (R23) –B.TECH CSE** (Applicable from the academic year 2023-24 and onwards) #### B.Tech. – III Year I Semester | S.No | Category | Title | L | T | P | C | |------|---|--|----|---|----|-----| | 1 | Professional Core | Data Warehousing and Data Mining | 3 | 0 | 0 | 3 | | 2 | Professional Core | Computer Networks | 3 | 0 | 0 | 3 | | 3 | Professional Core | Formal Languages and Automata Theory | 3 | 0 | 0 | 3 | | 4 | Professional
Elective-I | Object Oriented Analysis and Design Artificial Intelligence Microprocessors & Microcontrollers Quantum Computing 12 week MOOC Swayam/NPTEL course recommended by the BoS | | 0 | 0 | 3 | | 5 | Open Elective-I | OR Entrepreneurship Development & Venture Creation | 3 | 0 | 0 | 3 | | 6 | Professional Core | Data Mining Lab | 0 | 0 | 3 | 1.5 | | 7 | Professional Core | Computer Networks Lab | 0 | 0 | 3 | 1.5 | | 8 | Skill Enhancement course | Full Stack development-2 | 0 | 1 | 2 | 2 | | 9 | Engineering Science | User Interface Design using Flutter / SWAYAM Plus - Android Application Development (with Flutter) | 0 | 0 | 2 | 1 | | 10 | Evaluation of Commun | ity Service Internship | - | - | - | 2 | | | | Total | 15 | 1 | 10 | 23 | | MC | Minor Course (Student specialized minors po | nt may select from the same | 3 | 0 | 3 | 4.5 | | MC | Minor Course througweek, 3 credit course | h SWAYAM/NPTEL (minimum 12
) | 3 | 0 | 0 | 3 | | НС | Honors Course
(Student may select f | rom the same honors pool) | 3 | 0 | 0 | 3 | | НС | Honors Course (Student may select | from the same honors pool) | 3 | 0 | 0 | 3 | # HEHRU TECHNOLOGICAL STREET # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA # KAKINADA – 533 003, Andhra Pradesh, India ## **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** ## **B.Tech. III Year II Semester** | S.N | Category | Title | L | T | P | C | |------|---------------------------|--------------------------------------|--------|------|--------|-------| | 0. | | | | | | | | 1 | Professional Core | Compiler Design | 3 | 0 | 0 | 3 | | 2 | Professional Core | Cloud Computing | 3 | 0 | 0 | 3 | | 3 | Professional Core | Cryptography & Network Security | 3 | 0 | 0 | 3 | | 4 | Professional | 1. Software Testing Methodologies | 3 | 0 | 0 | 3 | | | Elective-II | 2. Cyber Security | | | | | | | | 3. DevOps | | | | | | | | 4. Machine Learning | | | | | | | | 5. 12 week MOOC | | | | | | | | Swayam/NPTEL course | | | | | | | | recommended by the BoS | | | | | | 5 | Professional Elective- | 1. Software Project Management | 3 | 0 | 0 | 3 | | | III | 2. Mobile Adhoc Networks | | | | | | | | 3. Natural Language Processing | | | | | | | | 4. Big Data Analytics | | | | | | | | 5. Distributed Operating System | | | | | | | | 6. 12 week MOOC | | | | | | | | Swayam/NPTEL course | | | | | | | O F1 II | recommended by the BoS | 2 | 0 | 0 | 2 | | 6 | Open Elective – II | | 3 | 0 | 0 | 3 | | 7 | Professional Core | Cloud Computing Lab | 0 | 0 | 3 | 1.5 | | 8 | Professional Core | Cryptography & Network Security Lab | 0 | 0 | 3 | 1.5 | | 9 | Skill Enhancement | Soft skills // SWAYAM Plus - 21st | 0 | 1 | 2 | 2 | | | course | Century Employability Skills | | | | | | 10 | Audit Course | Technical Paper Writing &IPR | 2 | 0 | 0 | - | | | | Total | 20 | 1 | 08 | 23 | | Mand | atory Industry Internship | Mini Project of 08 weeks duration du | ring s | umme | er vac | ation | | MC | Minor Course | | 3 | 0 | 3 | 4.5 | | | (Student may select from | the same specialized minors pool) | 3 | U | 3 | 7.5 | | MC | Minor Course | | 3 | 0 | 0 | 3 | | | · ` • | the same specialized minors pool) | 3 | U | U | 5 | | HC | Honors Course | | 3 | 0 | 0 | 3 | | | (Student may select from | the same honors pool) | | | | | | HC | Honors Course | 4.1. | 3 | 0 | 0 | 3 | | | (Student may select from | n the honors pool) | | * | | | ^{*} Under Industry Internship interested students can pursue SWAYAM Plus courses viz., Hands-on Masterclass on Data Analytics OR Artificial Intelligence for Real-World Application # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Open Electives, offered to other department students:** Open Elective I: Principles of Operating Systems/ Computer Organization and Architecture Open Elective II: Principles of Database Management Systems Open Elective III: Object Oriented Programming Through Java Open Elective IV: Principles of Software Engineering /Computer Networks #### **Minor Engineering** #### Note: - 1. To obtain Minor Engineering, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream. - 2. During Minor/Honors Course selection, there should not be any overlapping with Regular/Major/OPEN Electives #### Minor in CSE | | Any of the following 12 Week 2 and t NDTEL MOOC Course | • | |----|--|--------------------| | 4. | Principles of Operating Systems | 3-0-0-3 (IV-I) | | 3. | Advanced Data Structures & Algorithm Analysis | 3-0-3-4.5 (III-II) | | 2. | Principles of Software Engineering | 3-0-0-3 (III-I) | | 1. | Principles of Database Management Systems | 3-0-3-4.5 (II-II) | ### Any of the following 12 Week 3 credit NPTEL MOOC Courses - 5. Artificial Intelligence: Knowledge Representation and Reasoning - 6. Computer Networks and Internet Protocol - 7. Machine Learning and Deep Learning Fundamentals and Applications - 8. Fundamentals of Object Oriented Programming - 9. Discrete Mathematics for CS - 10. Software Engineering # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### COURSES OFFERED FOR HONORS DEGREE IN CSE Note: To obtain Honor's degree, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream. | 1. | Social Network Analysis | 12 Week 3 Credit Course, MOOCS | | | | | | | |-----|---|---------------------------------------|--|--|--|--|--|--| | 2. | Applied Linear Algebra in AI & ML | 12 Week 3 Credit Course, MOOCS | | | | | | | | 3. | 3. Design & Implementation of Human-Computer Interfaces – NPTEL MOOCS | | | | | | | | | 4. | Cryptography and Network Security | 12 Week 3 Credit Course, MOOCS | | | | | | | | 5. | Privacy and Security in Online Social Media | 12 Week 3 Credit Course, MOOCS | | | | | | | | 6. | Deep Learning for Natural Language Process | sing - 12 Week 3 Credit Course, MOOCS | | | | | | | | 7. | Computer Vision | - 12 Week 3 Credit Course, MOOCS | | | | | | | | 8. | Applied Time-Series Analysis | 12 Week 3 Credit Course, MOOCS | | | | | | | | 9. | Parallel Computer Architecture | 12 Week 3 Credit Course, MOOCS | | | | | | | | 10. | Reinforcement Learning | 12 Week 3 Credit Course, MOOCS | | | | | | | | 11. | GPU Architecture and Programming | 12 Week 3 Credit Course, MOOCS | | | | | | | | 12. | Computational Complexity | 12 Week 3 Credit Course, MOOCS | | | | | | | | 13. | Quantum Algorithms and Cryptography | 12 Week 3 Credit Course, MOOCS | | | | | | | | 14. | Unmanned Arial Systems & Robotics | 12 Week 3 Credit Course, MOOCS | | | | | | | | 15. | Prompt Engineering for Generative AI | (III - II) | | | | | | | # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India # **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | 1. | Computer Networks | 3-0-0-3 | |-----|--|-----------| | 2. | Artificial Intelligence | 3-0-0-3 | | 3. | Cyber Security | 3-0-0-3 | | 4. | Introduction to Data Science | 3-0-3-4.5 | | 5. | Data Warehousing and Data Mining | 3-0-0-3 | | 6. | Object Oriented Programming Through Java | 3-0-3-4.5 | | 7. | Cloud computing | 3-0-0-3 | | 8. | Graph Theory | 3-0-0-3 | | 9. | Data Analytics with Python | | | 10. | Foundations of Cryptography | | # KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | DATA WAREHOUSING & DATA | L | T | P | C | | |---------------------|-------------------------|---|---|---|---|--| | | MINING | 3 | 0 | 0 | 3 | | **Pre-requisites:** Data Structures, Algorithms, Probability & Statistics, Data Base Management Systems Course Objectives: The main objective of the course is to - Introduce basic concepts and techniques of data warehousing and data mining - Examine the types of the data to be mined and apply pre-processing methods on raw data - Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms. UNIT-I: Data Warehousing and Online Analytical Processing: Basic concepts, Data Warehouse Modeling: Data Cube and OLAP, Data Warehouse Design and Usage, Data Warehouse Implementation, Cloud Data Warehouse, Data Mining and Patten Mining, Technologies, Applications, Major issues, Data Objects & Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity. (Text Book-1) **UNIT II: Data Preprocessing:** An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization. (Text Book- 1) **UNIT–III: Classification:** Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Attribute Selection Measures, Tree Pruning, Scalability and Decision Tree Induction, Visual
Mining for Decision Tree Induction, Bayesian Classification Methods: Bayes Theorem, Naïve Bayes Classification, Rule-Based Classification, Model Evaluation and Selection. (Text Book- 2) **UNIT-IV: Association Analysis:** Problem Definition, Frequent Itemset Generation, Rule Generation: Confident Based Pruning, Rule Generation in Apriori Algorithm, Compact Representation of frequent item sets, FP-Growth Algorithm. (Text Book- 2) **UNIT-V: Cluster Analysis:** Overview, Basics and Importance of Cluster Analysis, Clustering techniques, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bi-secting K Means, Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Text Book- 2) **Text Books:** # ANIVERSITY OF AN ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 1. Data Mining concepts and Techniques, 3rd edition, Jiawei Han, Michel Kamber, Elsevier, 2011. - 2. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson, 2012. #### **Reference Books:** - 1. Data Mining: VikramPudi and P. Radha Krishna, Oxford Publisher. - 2. Data Mining Techniques, Arun K Pujari, 3rd edition, Universities Press,2013. - 3. (NPTEL course by Prof.PabitraMitra) http://onlinecourses.nptel.ac.in/noc17 mg24/preview - 4. http://www.saedsayad.com/data mining map.htm ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | COMPUTER NETWORKS | L | T | P | C | | |------------------------|---------------------|---|---|---|---|---| | III I cai I Scillestei | COMITOTER NET WORKS | 3 | 0 | 0 | 3 | Ī | #### **Course Objectives:** - To provide insight about networks, topologies, and the key concepts. - To gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities. - To understand the principles, key protocols, design issues, and significance of each layers in ISO and TCP/IP. - To know the basic concepts of network services and various network applications. **UNIT I: Introduction:** Network Types, LAN, MAN, WAN, Network Topologies Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP. **Physical Layer** –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and introduction about unguided media. **UNIT II: Data link layer:** Design issues, **Framing**: fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, **Elementary Data Link Layer protocols**: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel. **Sliding window protocol:** One bit, Go back N, Selective repeat-Stop and wait protocol, Data link layer in HDLC, Point to point protocol (PPP) **UNIT – III: Media Access Control: Random Access**: ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, **Controlled Access:** Reservation, Polling, Token Passing, **Channelization:** frequency division multiple Access(FDMA), time division multiple access(TDMA), code division multiple access(CDMA). Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet. **UNIT – IV: The Network Layer Design Issues** – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks, Routing Algorithms-The Optimality principle-Shortest path, Flooding, Distance vector, Link state, Hierarchical, Congestion Control algorithms-General principles of congestion control, Congestion prevention polices, Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding. Traffic Control Algorithm-Leaky bucket & Token bucket. **Internet Working:** How networks differ- How networks can be connected- Tunnelling, internetwork routing-, Fragmentation, network layer in the internet – IP protocols-IP Version 4 protocol-IPV4 Header Format, IP addresses, Class full Addressing, CIDR, Subnets-IP Version 6-The main IPV6 header, Transition from IPV4 to IPV6, Comparison of IPV4 & IPV6. **UNIT –V: The Transport Layer:** Transport layer protocols: Introduction-services- port number-User data gram protocol-User datagram-UDP services-UDP applications-Transmission control protocol: TCP services- TCP features- Segment- A TCP connection-windows in TCP- flow control-Error control, Congestion control in TCP. **Application Layer** — World Wide Web: HTTP, Electronic mail-Architecture- web based mail- email security- TELENET-local versus remote Logging-Domain Name System. #### **Text Books:** - 1. Computer Networksm, Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI - 2. Data Communications and Networks, Behrouz A. Forouzan, Fifth Edition TMH. #### **References Books:** - 1. Data Communications and Networks- Achut S Godbole, AtulKahate - 2. Computer Networks, Mayank Dave, CENGAGE #### KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | FORMAL LANGUAGES AND | L | T | P | C | Ī | |---------------------|----------------------|---|---|---|---|---| | | AUTOMATA THEORY | 3 | 0 | 0 | 3 | l | #### Course Objectives: - To learn fundamentals of Regular and Context Free Grammars and Languages - To understand the relation between Regular Language and Finite Automata and machines - To learn how to design Automata's and machines as Acceptors, Verifiers and Translators - To understand the relation between Contexts free Languages, PDA and TM - To learn how to design PDA as acceptor and TM as Calculators #### **UNIT I** Finite Automata: Need of Automata theory, Central Concepts of Automata Theory, Automation, Finite Automation, Transition Systems, Acceptance of a String, DFA, Design of DFAs, NFA, Design of NFA, Equivalence of DFA and NFA, Conversion of NFA into DFA, Finite Automata with E-Transitions, Minimization of Finite Automata, Finite Automata with output-Mealy and Moore Machines, Applications and Limitation of Finite Automata. #### **UNIT II** Regular Expressions, Regular Sets, Identity Rules, Equivalence of two RE, Manipulations of REs, Finite Automata and Regular Expressions, Inter Conversion, Equivalence between FA and RE, Pumping Lemma of Regular Sets, Closure Properties of Regular Sets, Grammars, Classification of Grammars, Chomsky Hierarchy Theorem, Right and Left Linear Regular Grammars, Equivalence between RG and FA, Inter Conversion. #### **UNIT III** Formal Languages, Context Free Grammar, Leftmost and Rightmost Derivations, Parse Trees, Ambiguous Grammars, Simplification of Context Free Grammars-Elimination of Useless Symbols, & Productions and Unit Productions, Normal Forms-Chomsky Normal Form and Greibach Normal Form, Pumping Lemma, Closure Properties, Applications of Context Free Grammars. #### **UNIT IV** Pushdown Automata, Definition, Model, Graphical Notation, Instantaneous Description, Language Acceptance of Pushdown Automata, Design of Pushdown Automata, Deterministic and Non – Deterministic Pushdown Automata, Equivalence of Pushdown Automata and Context Free Grammars, Conversion, Two Stack Pushdown Automata, Application of Pushdown Automata. ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **UNIT V** Turning Machine: Definition, Model, Representation of TMs-Instantaneous Descriptions, Transition Tables and Transition Diagrams, Language of a TM, Design of TMs, Types of TMs, Church's Thesis, Universal and Restricted TM, Decidable and Un-decidable Problems, Halting Problem of TMs, Post's Correspondence Problem, Modified PCP, Classes of P and NP, NP-Hard and NP-Complete Problems. #### **Text Books:** - 1. Introduction to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani and J. D. Ullman, 3rd Edition, Pearson, 2008 - 2. Theory of Computer Science-Automata, Languages and Computation, K. L. P. Mishra and N. Chandrasekharan, 3rd Edition, PHI, 2007 #### **Reference Books:** - 1. Elements of Theory of Computation, Lewis H.P. & Papadimition C.H., Pearson /PHI - 2. Theory of Computation, V. Kulkarni, Oxford University Press, 2013 - 3. Theory of Automata, Languages and Computation, Rajendra kumar, McGraw Hill, 2014 #### e-Resources: 1) https://nptel.ac.in/courses/106/104/106104028/ #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | OBJECT ORIENTED ANALYSIS AND | L | T | P | C | | |---------------------|------------------------------|---|---|---|---|---| | | DESIGN | 3 | 0 | 0 | 3 | Ī | **Course Objectives:** The main objective is the students to - Become familiar with all phases of OOAD. - Master the main features of the UML. - Master the main concepts of Object Technologies and how to apply them at work and develop the ability to analyze and solve challenging problem in various domains. - Learn the Object design Principles and understand how to apply them towards Implementation. #### UNIT I: **Introduction:** The Structure of Complex systems, The Inherent Complexity of Software, Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems. **Case Study:** System Architecture: Satellite-Based Navigation #### UNIT II: **Introduction to UML:** Importance of modeling, principles of modeling, object
oriented modeling, conceptual model of the UML, Architecture, and Software Development Life Cycle. **Basic Structural Modeling:** Classes, Relationships, common Mechanisms, and diagrams. **Case Study:** Control System: Traffic Management. #### UNIT III: Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams. Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages. Case Study: AI: Cryptanalysis. #### UNIT IV: **Basic Behavioral Modeling-I:** Interactions, Interaction diagrams Use cases, Use case Diagrams, Activity Diagrams. **Case Study:** Web Application: Vacation Tracking System #### UNIT V: **Advanced Behavioral Modeling:** Events and signals, state machines, processes and Threads, time and space, state chart diagrams. **Architectural Modeling:** Component, Deployment, Component diagrams and Deployment diagrams. **Case Study:** Weather Forecasting #### **Text Books:** 1. Grady BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston, "Object- Oriented Analysis and Design with Applications", 3rd edition, 2013, PEARSON. ## KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** 2. Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education. #### **Reference Books:** - 1. Meilir Page-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education. - 2. Pascal Roques: Modeling Software Systems Using UML2, WILEY- Dreamtech India Pvt. Ltd. - 3. Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies. - 4. Appling UML and Patterns: An introduction to Object Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education. ### KAKINADA - 533 003, Andhra Pradesh, India #### B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS) | III Year I Semester | ARTIFICIAL INTELLIGENCE | L | T | P | C | | |-----------------------|-------------------------|---|---|---|---|---| | III I cai I Schicstei | ARTIFICIAL INTELLIGENCE | 3 | 0 | 0 | 3 | 1 | #### **Pre-requisite:** - 1. Knowledge in Computer Programming. - 2. A course on "Mathematical Foundations of Computer Science". - 3. Background in linear algebra, data structures and algorithms, and probability. #### **Course Objectives:** - 1. The student should be made to study the concepts of Artificial Intelligence. - 2. The student should be made to learn the methods of solving problems using Artificial Intelligence. - 3. The student should be made to introduce the concepts of Expert Systems. - 4. To understand the applications of AI, namely game playing, theorem proving, and machine learning. - 5. To learn different knowledge representation techniques #### UNIT - I **Introduction:** AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation. #### UNIT - II **Searching-** Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing-Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. #### **UNIT - III** **Representation of Knowledge:** Knowledge representation issues, predicate logic-logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Bayes' probabilistic interferences and dempstershafer theory. #### **UNIT - IV** **Logic concepts:** First order logic. Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining, Resolution, Learning from observation Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods, Reinforcement Learning. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** **Expert Systems:** Architecture of expert systems, Roles of expert systems – Knowledge Acquisition Meta knowledge Heuristics. Typical expert systems – MYCIN, DART, XCON: Expert systems shells. #### **Textbooks:** - 1. S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", SecondEdition, Pearson Education. - 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill #### **Reference Books:** - 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press. - 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problemsolving", Fourth Edition, Pearson Education. - 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers. - 4. Artificial Intelligence, SarojKaushik, CENGAGE Learning. #### **Online Learning Resources:** - 1. https://ai.google/ - 2. https://swayam.gov.in/nd1_noc19_me71/preview #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | MICROPROCESSORS & | L | T | P | C | | |---------------------|-------------------|---|---|---|---|--| | | MICROCONTROLLERS | 3 | 0 | 0 | 3 | | #### **Course Objectives:** - To introduce fundamental architectural concepts of microprocessors and microcontrollers. - To impart knowledge on addressing modes and instruction set of 8086 and 8051 - To introduce assembly language programming concepts - To explain memory and I/O interfacing with 8086 and 8051 - To introduce 16 bit and 32 bit microcontrollers. #### **UNIT I:** **8086** Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration. #### **UNIT II:** **8086 Programming**: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools. #### **UNIT III:** **8086 Interfacing**: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers. #### **UNIT IV:** Microcontroller, Architecture of 8051, Special Function Registers(SFRs), I/O Pins Ports and Circuits, Instruction set, Addressing modes, Assembly language programming. #### **UNIT V:** Interfacing Microcontroller, Programming 8051 Timers, Serial Port Programming, Interrupts Programming, LCD & Keyboard Interfacing, ADC, DAC & Sensor Interfacing, External Memory Interface, Stepper Motor and Waveform generation, Comparison of Microprocessor, Microcontroller, PIC and ARM processors #### **Textbooks:** - 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition,1994. - 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw Hill Education, 2017. # KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012. #### **Reference Books:** - 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the 8085, 6th edition, Penram International Publishing, 2013. - 2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004. ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | QUANTUM COMPUTING | L | T | P | C | | |---------------------|--------------------|---|---|---|---|---| | | QUANTUM COMI UTING | 3 | 0 | 0 | 3 | Ī | #### **Course Objectives:** To introduce the fundamentals of quantum computing, the problem-solving approach using finite dimensional mathematics #### UNIT - I History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations #### **UNIT - II** Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and supersymmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma) #### **UNIT - III** Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states. #### **UNIT - IV** Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm. #### UNIT - V Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation #### **Text Books:** - 1. Quantum Computation and Quantum Information, Nielsen M. A., Cambridge - 2. Programming Quantum Computers, Essential Algorithms and Code
Samples, Eric R Johnson, Nic Harrigan, Mercedes Ginemo, Segovia, Oreilly #### **Reference Books:** 1. Quantum Computing for Computer Scientists, Noson S. Yanofsk, Mirco A. Mannucci # KAKINADA – 533 003, Andhra Pradesh, India ## **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 2. Principles of Quantum Computation and Information, Benenti G., Casati G. and Strini G., Vol.I: Basic Concepts, Vol II - 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | DATA MINING LAB | L | T | P | C | |---------------------|-----------------|---|---|---|-----| | | | 0 | 0 | 3 | 1.5 | **Pre-requisites:** Data Base Management Systems, Python Programming Course Objectives: The main objective of the course is to - Inculcate Conceptual, Logical, and Physical design of Data Warehouses OLAP applications and OLAP deployment - Design a data warehouse or data mart to present information needed by management in a form that is usable - Emphasize hands-on experience working with all real data sets. - Test real data sets using popular data mining tools such as WEKA, Python Libraries - Develop ability to design various algorithms based on data mining tools. Software Requirements: WEKA Tool/Python/R-Tool/Rapid Tool/Oracle Data mining ## **List of Experiments:** - 1. Creation of a Data Warehouse. - Build Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration Tool, Pentaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects, etc.,) - Design multi-dimensional data models namely Star, Snowflake and Fact Constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, manufacturing, Automobiles, sales etc). - Write ETL scripts and implement using data warehouse tools. - Perform Various OLAP operations such slice, dice, roll up, drill up and pivot #### 2. Explore machine learning tool "WEKA" - Explore WEKA Data Mining/Machine Learning Toolkit. - Downloading and/or installation of WEKA data mining toolkit. - Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface. - Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel) - Study the arff file format Explore the available data sets in WEKA. Load a data set (ex. Weather dataset, Iris dataset, etc.) - Load each dataset and observe the following: - 1. List the attribute names and they types - 2. Number of records in each dataset - 3. Identify the class attribute (if any) - 4. Plot Histogram - 5. Determine the number of records for each class. - 6. Visualize the data in various dimensions ## KAKINADA – 533 003, Andhra Pradesh, India B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS) - 3. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets - Explore various options available in Weka for preprocessing data and apply Unsupervised filters like Discretization, Resample filter, etc. on each dataset - Load weather. nominal, Iris, Glass datasets into Weka and run Apriori Algorithm with different support and confidence values. - Study the rules generated. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm. Study the rules generated. - Derive interesting insights and observe the effect of discretization in the rule generation process. - 4. Demonstrate performing classification on data sets Weka/R - Load each dataset and run 1d3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic. - Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix. - Load each dataset into Weka/R and perform Naïve-bayes classification and k-Nearest Neighbour classification. Interpret the results obtained. - Plot RoC Curves - Compare classification results of ID3, J48, Naïve-Bayes and k-NN classifiers for each dataset, and deduce which classifier is performing best and poor for each dataset and justify. - 5. Demonstrate performing clustering of data sets - Load each dataset into Weka/R and run simple k-means clustering algorithm with different values of k (number of desired clusters). - Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights. - Explore other clustering techniques available in Weka/R. - Explore visualization features of Weka/R to visualize the clusters. Derive interesting insights and explain. - 6. Demonstrate knowledge flow application on data sets into Weka/R - Develop a knowledge flow layout for finding strong association rules by using Apriori, FP Growth algorithms - Set up the knowledge flow to load an ARFF (batch mode) and perform a cross validation using J48 algorithm - Demonstrate plotting multiple ROC curves in the same plot window by using j48 and Random forest tree # WVERSTY. ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 7. Demonstrate ZeroR technique on Iris dataset (by using necessary preprocessing technique(s)) and share your observations - 8. Write a java program to prepare a simulated data set with unique instances. - 9. Write a Python program to generate frequent item sets / association rules using Apriori algorithm - 10. Write a program to calculate chi-square value using Python/R. Report your observation. - 11. Write a program of Naive Bayesian classification using Python/R programming language. - 12. Implement a Java/R program to perform Apriori algorithm - 13. Write a R program to cluster your choice of data using simple k-means algorithm using JDK - 14. Write a program of cluster analysis using simple k-means algorithm Python/R programming language. - 15. Write a program to compute/display dissimilarity matrix (for your own dataset containing at least four instances with two attributes) using Python - 16. Visualize the datasets using matplotlib in python/R.(Histogram, Box plot, Bar chart, Pie chart etc.,) ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | COMPUTER NETWORKS LAB | L | T | P | C | |-----------------------|-----------------------|---|---|---|-----| | 111 I car I Schiester | COMPUTER NETWORKS EAD | 0 | 0 | 3 | 1.5 | #### **Course Objectives:** Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP. A lab provides a practical approach to Ethernet/Internet networking: networks are assembled, and experiments are made to understand the layered architecture and how do some important protocols work #### **List of Experiments:** - 1. Study of Network devices in detail and connect the computers in Local Area Network. - 2. Write a Program to implement the data link layer farming methods such as i) Character stuffing ii) bit stuffing. - 3. Write a Program to implement data link layer farming method checksum. - 4. Write a program for Hamming Code generation for error detection and correction. - 5. Write a Program to implement on a data set of characters the three CRC polynomials CRC 12, CRC 16 and CRC CCIP. - 6. Write a Program to implement Sliding window protocol for Goback N. - 7. Write a Program to implement Sliding window protocol for Selective repeat. - 8. Write a Program to implement Stop and Wait Protocol. - 9. Write a program for congestion control using leaky bucket algorithm - 10. Write a Program to implement Dijkstra's algorithm to compute the Shortest path through a graph. - 11. Write a Program to implement Distance vector routing algorithm by obtaining routing table at each node (Take an example subnet graph with weights indicating delay between nodes). - 12. Write a Program to implement Broadcast tree by taking subnet of hosts. - 13. Wireshark - i. Packet Capture Using Wire shark - ii. Starting Wire shark - iii. Viewing Captured Traffic - iv. Analysis and Statistics & Filters. - 14. How to run Nmap scan - 15. Operating System Detection using Nmap - 16. Do the following using NS2 Simulator - i. NS2 Simulator-Introduction - ii. Simulate to Find the Number of Packets Dropped - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP - iv. Simulate to Find the Number of Packets Dropped due to Congestion - v. Simulate to Compare Data Rate& Throughput. #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | FULL STACK DEVELOPMENT - 2 | L | T | P | C | | |---------------------|----------------------------|---|---|---|---|--| | III Teal T Semester | FULL STACK DEVELOTMENT - 2 | 0 | 1 | 2 | 2 | | #### **Course Objectives:** The main objectives of the course are to - Make use of router, template engine and authentication using sessions to develop application in Express JS. - Build a single page application using RESTful APIs in Express JS - Apply router and hooks in designing React JS application - Make use of MongoDB queries to perform CRUD operations on document database #### **Experiments covering the Topics:** - Express JS Routing, HTTP Methods, Middleware, Templating, Form Data - Express JS Cookies, Sessions, Authentication, Database, RESTful APIs - React JS Render HTML, JSX, Components function & Class, Props and States, Styles, Respond to Events - React JS Conditional Rendering, Rendering Lists, React Forms, React Router, Updating the Screen - React JS Hooks, Sharing data between Components, Applications To-do list and Ouiz - MongoDB Installation, Configuration, CRUD operations, Databases, Collections and Records #### **Sample Experiments:** ## 1. Express JS – Routing, HTTP Methods, Middleware. - a.
Write a program to define a route, Handling Routes, Route Parameters, Query Parameters and URL building. - b. Write a program to accept data, retrieve data and delete a specified resource using http methods. - c. Write a program to show the working of middleware. #### 2. Express JS – Templating, Form Data - a. Write a program using templating engine. - b. Write a program to work with form data. #### 3. Express JS – Cookies, Sessions, Authentication - a. Write a program for session management using cookies and sessions. - b. Write a program for user authentication. #### 4. Express JS – Database, RESTful APIs ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - a. Write a program to connect MongoDB database using Mangoose and perform CRUD operations. - b. Write a program to develop a single page application using RESTful APIs. #### 5. ReactJS - Render HTML, JSX, Components - function & Class - a. Write a program to render HTML to a web page. - b. Write a program for writing markup with JSX. - c. Write a program for creating and nesting components (function and class). d. #### 6. ReactJS - Props and States, Styles, Respond to Events - a. Write a program to work with props and states. - b. Write a program to add styles (CSS & Sass Styling) and display data. - c. Write a program for responding to events. ## 7. ReactJS - Conditional Rendering, Rendering Lists, React Forms - a. Write a program for conditional rendering. - b. Write a program for rendering lists. - c. Write a program for working with different form fields using react forms. ## 8. ReactJS - React Router, Updating the Screen - a. Write a program for routing to different pages using react router. - b. Write a program for updating the screen. #### 9. ReactJS - Hooks, Sharing data between Components - a. Write a program to understand the importance of using hooks. - **b.** Write a program for sharing data between components. #### 10. MongoDB – Installation, Configuration, CRUD operations - a. Install MongoDB and configure ATLAS - b. Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove() #### 11. MongoDB - Databases, Collections and Records - a. Write MongoDB queries to Create and drop databases and collections. - b. Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate(). #### 12. Augmented Programs: (Any 2 must be completed) - a. Design a to-do list application using NodeJS and ExpressJS. - b. Design a Quiz app using ReactJS. - c. Complete the MongoDB certification from MongoDB University website. ## KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Text Books:** - 1. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly. - 2. Node.Js in Action, Mike Cantelon, Mark Harter, T.J. Holowaychuk, Nathan Rajlich, Manning Publications. (Chapters 1-11) - 3. React Quickly, AzatMardan, Manning Publications (Chapters 1-8,12-14) #### Web Links: - 1. ExpressJS https://www.tutorialspoint.com/expressjs - 2. ReactJS https://www.w3schools.com/REACT (and) https://react.dev/learn# - 3. MongoDB https://learn.mongodb.com/learning-paths/introduction-to-mongodb #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year I Semester | USER INTERFACE DESIGN USING | L | T | P | C | | |---------------------|-----------------------------|---|---|---|---|---| | | FLUTTER | 0 | 0 | 2 | 1 | l | #### **Course Objectives:** - Learns to Implement Flutter Widgets and Layouts - Understands Responsive UI Design and with Navigation in Flutter - Knowledge on Widges and customize widgets for specific UI elements, Themes - Understand to include animation apart from fetching data #### **List of Experiments:** Students need to implement the following experiments - 1. a) Install Flutter and Dart SDK. - b) Write a simple Dart program to understand the language basics. - 2. a) Explore various Flutter widgets (Text, Image, Container, etc.). - b) Implement different layout structures using Row, Column, and Stack widgets. - 3. a) Design a responsive UI that adapts to different screen sizes. - b) Implement media queries and breakpoints for responsiveness. - 4. a) Set up navigation between different screens using Navigator. - b) Implement navigation with named routes. - 5. a) Learn about stateful and stateless widgets. - b) Implement state management using set State and Provider. - 6. a) Create custom widgets for specific UI elements. - b) Apply styling using themes and custom styles. - 7. a) Design a form with various input fields. - b) Implement form validation and error handling. - 8. a) Add animations to UI elements using Flutter's animation framework. - b) Experiment with different types of animations (fade, slide, etc.). - 9. a) Fetch data from a REST API. - b) Display the fetched data in a meaningful way in the UI. - 10. a) Write unit tests for UI components. - b) Use Flutter's debugging tools to identify and fix issues. #### **Text Books:** - 1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development. - 2. Rap Payne, Beginning App Development with Flutter: Create Cross-Platform Mobile Apps 1st Edition, Apres - 3. Richard Rose, Flutter & Dart Cookbook, Developing Full stack Applications for the Cloud, Oreilly. ### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | COMPILER DESIGN | L | T | P | C | |----------------------|-----------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | #### **Course Objectives:** Understand the basic concept of compiler design, and its different phases which will be helpful to construct new tools like LEX, YACC, etc. #### **UNIT I:** **Lexical Analysis:** Language Processors, Structure of a Compiler, Lexical Analysis, The Role of the Lexical Analyzer, Bootstrapping, Input Buffering, Specification of Tokens, Recognition of Tokens, Lexical Analyzer Generator-LEX, Finite Automata, Regular Expressions and Finite Automata, Design of a Lexical Analyzer Generator. **Syntax Analysis:** The Role of the Parser, Context-Free Grammars, Derivations, Parse Trees, Ambiguity, Left Recursion, Left Factoring, #### **UNIT II:** **Top Down Parsing:** Pre Processing Steps of Top Down Parsing, Backtracking, Recursive Descent Parsing, LL (1) Grammars, Non-recursive Predictive Parsing, Error Recovery in Predictive Parsing. **Bottom Up Parsing:** Introduction, Difference between LR and LL Parsers, Types of LR Parsers, Shift Reduce Parsing, SLR Parsers, Construction of SLR Parsing Tables, More Powerful LR Parses, Construction of CLR (1) and LALR Parsing Tables, Dangling Else Ambiguity, Error Recovery in LR Parsing, Handling Ambiguity Grammar with LR Parsers. #### **UNIT III:** **Syntax Directed Translation:** Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate Code Generation:** Variants of Syntax Trees, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking, Control Flow, Backpatching, Intermediate Code for Procedures. #### **UNIT IV:** **Code Optimization:** The Principle Sources of Optimization, Basic Blocks, Optimization of Basic Blocks, Structure Preserving Transformations, Flow Graphs, Loop Optimization, Data-Flow Analysis, Peephole Optimization #### **UNIT V:** **Run Time Environments:** Storage Organization, Run Time Storage Allocation, Activation Records, Procedure Calls, Displays **Code Generation:** Issues in the Design of a Code Generator, Object Code Forms, Code Generation Algorithm, Register Allocation and Assignment. # WEHRU TECHNOLOGICAL TO A KINADA # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS) #### **Text Books:** 1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Pearson, 2007. #### **Reference Books:** - 1. Compiler Construction, Principles and Practice, Kenneth C Louden, Cengage Learning, 2006 - 2. Modern compiler implementation in C, Andrew W Appel, Revised edition, Cambridge University Press. - 3. Optimizing Compilers for Modern Architectures, Randy Allen, Ken Kennedy, Morgan Kauffmann, 2001. - 4. Levine, J.R., T. Mason and D. Brown, Lex and Yacc, edition, O'Reilly & Associates, 1990 #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | CLOUD COMPUTING | L | T | P | C | |----------------------|-----------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | #### **Course Objectives:** - To explain the evolving utility computing model called cloud computing. - To introduce the various levels of services offered by cloud. - To discuss the fundamentals of cloud enabling technologies such as distributed computing, service-oriented architecture and virtualization. - To emphasize the security and other challenges in cloud computing. - To introduce the advanced concepts such as containers, serverless computing and cloud-centric Internet of Things. #### **UNIT -I**: Introduction to Cloud Computing Fundamentals Cloud computing at a glance, defining a cloud, cloud computing reference model, types of services (IaaS, PaaS, SaaS), cloud deployment models (public, private, hybrid), utility computing, cloud computing characteristics and benefits, cloud service providers (Amazon Web Services, Microsoft Azure, Google AppEngine). #### **UNIT-II**: Cloud Enabling Technologies Ubiquitous Internet, parallel and distributed computing, elements of parallel computing, hardware architectures for parallel
computing (SISD, SIMD, MISD, MIMD), elements of distributed computing, Inter-process communication, technologies for distributed computing, remote procedure calls (RPC), service-oriented architecture (SOA), Web services, virtualization. #### **UNIT-III**: Virtualization and Containers Characteristics of virtualized environments, taxonomy of virtualization techniques, virtualization and cloud Computing, pros and cons of virtualization, technology examples (XEN, VMware), building blocks of containers, container platforms (LXC, Docker), container orchestration, Docker Swarm and Kubernetes, public cloud VM (e.g. Amazon EC2) and container (e.g. Amazon Elastic Container Service) offerings. #### **UNIT-IV**: Cloud computing challenges Economics of the cloud, cloud interoperability and standards, scalability and fault tolerance, energy efficiency in clouds, federated clouds, cloud computing security, fundamentals of computer security, cloud security architecture, cloud shared responsibility model, security in cloud deployment models. #### **UNIT -V**: Advanced concepts in cloud computing Serverless computing, Function-as-a-Service, serverless computing architecture, public cloud (e.g. AWS Lambda) and open-source (e.g. OpenFaaS) serverless platforms, Internet of Things (IoT), applications, cloud-centric IoT and layers, edge and fog computing, DevOps, infrastructure-as-code, quantum cloud computing. ## KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Text Books:** - 1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, Shivananda Poojara, Satish N. Srirama, Mc Graw Hill, 2024. - 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012. #### **Reference Books:** - 1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018 - 2. Essentials of cloud Computing, K. Chandrasekhran, CRC press, 2014. - 3. Online documentation and tutorials from cloud service providers (e.g., AWS, Azure, GCP) ## KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | CRYPTOGRAPHY & NETWORK | L | T | P | C | |----------------------|------------------------|---|---|---|---| | | SECURITY | 3 | 0 | 0 | 3 | #### **Course Objectives:** The main objectives of this course are to explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, public key algorithms, design issues and working principles of various authentication protocols and various secure communication standards including Kerberos, IPsec, and SSL/TLS. #### **UNIT I:** **Basic Principles :** Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography- integer arithmetic, modular arithmetic, matrices, linear conguence. #### **UNIT II:** **Symmetric Encryption:** Mathematics of Symmetric Key Cryptography-algebraic structures, GF(2ⁿ) Fields, Introduction to Modern Symmetric Key Ciphers-modern block ciphers, modern stream ciphers, Data Encryption Standard- DES structure, DES analysis, Security of DES, Multiple DES, Advanced Encryption Standard-transformations, key expansions, AES ciphers, Analysis of AES. #### **UNIT III:** **Asymmetric Encryption:** Mathematics of Asymmetric Key Cryptography-primes, primality testing, factorization, CRT, Asymmetric Key Cryptography- RSA crypto system, Rabin cryptosystem, Elgamal Crypto system, ECC #### **UNIT IV:** **Data Integrity, Digital Signature Schemes & Key Management :** Message Integrity and Message Authentication-message integrity, Random Oracle model, Message authentication, Cryptographic Hash Functions-whirlpool, SHA-512, Digital Signature- process, services, attacks, schemes, applications, Key Management-symmetric key distribution, Kerberos. #### **UNIT V:** **Network Security-I:** Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS, **Network Security-II:** Security at the Network Layer: IPSec-two modes, two security protocols, security association, IKE, ISAKMP, System Security-users, trust, trusted systems, buffer overflow, malicious software, worms, viruses, IDS, Firewalls. #### **Text Books:** ## KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 1. Cryptography and Network Security, 3rd Edition Behrouz A Forouzan, Deb deep Mukhopadhyay, McGraw Hill,2015 - 2. Cryptography and Network Security,4th Edition, William Stallings, (6e) Pearson,2006 - 3. Everyday Cryptography, 1st Edition, Keith M.Martin, Oxford,2016 #### **Reference Books:** 1. Network Security and Cryptography, 1st Edition, Bernard Meneges, Cengage Learning,2018 #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | SOFTWARE TESTING | L | T | P | С | |----------------------|------------------|---|---|---|---| | | METHODOLOGIES | 3 | 0 | 0 | 3 | #### **Course Objectives** - To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies. - To develop skills in software test automation and management using the latest tools. #### UNIT - I Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing. #### **UNIT - II** Transaction Flow Testing: transaction flows, transaction flow testing techniques. Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability. #### **UNIT - III** Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection. Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications. #### **UNIT-IV** State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips. #### UNIT - V Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon). #### **Text Books:** - 1. Software Testing techniques Baris Beizer, Dreamtech, second edition. - 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech. #### **Reference Books:** - 1. The craft of software testing Brian Marick, Pearson Education. - 2. Software Testing Techniques SPD(Oreille) - 3. Software Testing in the Real World Edward Kit, Pearson. # WEHRU TECHNOLOGICAL TO THE PROPERTY OF PRO # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA # KAKINADA – 533 003, Andhra Pradesh, India ## **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 4. Effective methods of Software Testing, Perry, John Wiley. - 5. Art of Software Testing Meyers, John Wiley. #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | CYBER SECURITY | L | T | P | C | |-----------------------|----------------|---|---|---|---| | in i cai ii scinestei | CIDEN SECURITI | 3 | 0 | 0 | 3 | #### **Course Objectives:** The aim of the course is to - identify security risks and take preventive steps - understand the forensics fundamentals - understand the evidence capturing process - understand the preservation of digital evidence **UNIT I: Introduction to Cybercrime:** Introduction, Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Cyber criminals, Classifications of Cybercrime, Cyberstalking, Cybercafe and Cybercrimes, Botnets. Attack Vector, Proliferation of Mobile and Wireless Devices, Security Challenges Posed by Mobile Devices, Attacks on Mobile/Cell Phones, Network and Computer Attacks. **UNIT II: Tools and Methods:** Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, Sniffers, Spoofing, Session Hijacking Buffer over flow, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks, Identity Theft (ID Theft), Foot Printing and Social Engineering, Port Scanning, Enumeration. **UNIT III: Cyber Crime Investigation:** Introduction, Investigation Tools, eDiscovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Hands on Case Studies. Encryption and Decryption Methods, Search and Seizure of Computers, Recovering Deleted Evidences, Password Cracking. UNIT IV: Computer Forensics and Investigations: Understanding Computer Forensics, Preparing for Computer Investigations. Current Computer Forensics Tools: Evaluating Computer Forensics Tools, Computer Forensics Software Tools, Computer Forensics Hardware Tools, Validating and Testing Forensics Software, Face, Iris and Fingerprint Recognition, Audio Video Analysis, Windows System Forensics, Linux System Forensics, Graphics and Network Forensics, E-mail Investigations, Cell Phone and Mobile Device Forensics. **UNIT V: Cyber Crime Legal Perspectives:** Introduction, Cybercrime and the Legal Landscape around the World, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Consequences of Not Addressing the Weakness in Information Technology Act, Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment, Cyberlaw, Technology and Students: Indian Scenario. #### **Text Books:** #### KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE
STRUCTURE & SYLLABUS)** - 1. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY, 2011. - 2. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009. #### **Reference Books:** - 1. Michael T. Simpson, Kent Backman and James E. Corley, "Hands on Ethical Hacking and Network Defence", Cengage, 2019. - 2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi. - 3. Alfred Basta, Nadine Basta, Mary Brown and Ravinder Kumar "Cyber Security and Cyber Laws", Cengage, 2018. #### **E-Resources:** - 1. CERT-In Guidelines- http://www.cert-in.org.in/ - 2. https://www.coursera.org/learn/introduction-cybersecurity-cyber-attacks [Online Course] - 3. https://computersecurity.stanford.edu/free-online-videos [Free Online Videos] - 4. Nickolai Zeldovich. 6.858 Computer Systems Security. Fall 2014. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu License: Creative Commons BY-NC-SA. #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester DEVOPS | DEVOPS | L | T | P | C | |-----------------------------|--------|---|---|---|---| | in real in semester | DEVOIS | 3 | 0 | 0 | 3 | #### **Course Objectives:** The main objectives of this course are to: - Describe the agile relationship between development and IT operations. - Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability. - Implement automated system update and DevOps lifecycle. #### **UNIT-I** **Introduction to DevOps:** Introduction to SDLC, Agile Model. Introduction to Devops. DevOps Features, DevOps Architecture, DevOps Lifecycle, Understanding Workflow and principles, Introduction to DevOps tools, Build Automation, Delivery Automation, Understanding Code Quality, Automation of CI/CD. Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples #### **UNIT-II** **Source Code Management (GIT):** The need for source code control, The history of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, GIT commands, GIT branching, GIT staging and collaboration. UNIT TESTING - CODE COVERAGE: Junit, nUnit & Code Coverage with Sonar Qube, SonarQube - Code Quality Analysis. #### **UNIT-III** **Build Automation - Continuous Integration (CI):** Build Automation, What is CI Why Cl is Required, CI tools, Introduction to Jenkins (With Architecture), jenkins workflow, jenkins master slave architecture, Jenkins Pipelines, PIPELINE BASICS - Jenkins Master, Node, Agent, and Executor Freestyle Projects & Pipelines, Jenkins for Continuous Integration, Create and Manage Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes. #### **UNIT-IV** **Continuous Delivery (CD):** Importance of Continuous Delivery, CONTINUOUS DEPLOYMENT CD Flow, Containerization with Docker: Introduction to Docker, Docker installation, Docker commands, Images & Containers, DockerFile, Running containers, Working with containers and publish to Docker Hub. **Testing Tools:** Introduction to Selenium and its features, JavaScript testing. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **UNIT-V** **Configuration Management - ANSIBLE:** Introduction to Ansible, Ansible tasks, Roles, Jinja templating, Vaults, Deployments using Ansible. CONTAINERIZATION USING KUBERNETES(OPENSHIFT): Introduction to Kubernetes Namespace & Resources, CI/CD - On OCP, BC, DC & ConfigMaps, Deploying Apps on Openshift Container Pods. Introduction to Puppet master and Chef. #### **Text Books:** - 1. Joyner, Joseph., Devops for Beginners: Devops Software Development Method Guide for Software Developers and It Professionals, 1st Edition Mihails Konoplows, 2015. - 2. Alisson Machado de Menezes., Hands-on DevOps with Linux,1st Edition, BPB Publications, India, 2021. - 1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10 - 2. Gene Kim Je Humble, Patrick Debois, John Willis. The DevOps Handbook, 1st Edition, IT Revolution Press, 2016. - 3. Verona, Joakim Practical DevOps, 1st Edition, Packt Publishing, 2016. - 4. Joakim Verona. Practical Devops, Ingram short title; 2nd edition (2018). ISBN10: 1788392574 - 5. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952 #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester MACHINE LEARNING | L | T | P | C | | |---------------------------------------|------------------|---|---|---|---| | ili i cai ii Scillestei | WACHINE LEARNING | 3 | 0 | 0 | 3 | #### **Course Objectives:** The objectives of the course is to - Define machine learning and its different types (supervised and unsupervised) and understand their applications. - Apply supervised learning algorithms including decision trees and k-nearest neighbours (k-NN). - Implement unsupervised learning techniques, such as K-means clustering. **UNIT-I: Introduction to Machine Learning:** Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets. **UNIT-II:** Nearest Neighbor-Based Models: Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms. **UNIT-III: Models Based on Decision Trees:** Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias-Variance Trade-off, Random Forests for Classification and Regression. The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification, Class Conditional Independence and Naive Bayes Classifier (NBC) UNIT-IV: Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Backpropagation for Training an MLP. **UNIT-V: Clustering :** Introduction to Clustering, Partitioning of Data, Matrix Factorization, Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering. #### **Text Books:** # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India # **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** 1. "Machine Learning Theory and Practice", M N Murthy, V S Ananthanarayana, Universities Press (India), 2024 - 1. "Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017 - 2. "Machine Learning in Action", Peter Harrington, DreamTech - 3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019. #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Voor II Somostor | ar II Semester SOFTWARE PROJECT MANAGEMENT | L | T | P | С | |-----------------------|--|---|---|---|---| | in i cai ii scinestei | SOFT WARE I ROSECT MANAGEMENT | 3 | 0 | 0 | 3 | #### **Course Objectives:** At the end of the course, the student shall be able to: - To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project - To compare and differentiate organization structures and project structures - To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools #### **UNIT-I:** **Conventional Software Management:** The waterfall model, conventional software Management performance. **Evolution of Software Economics:** Software Economics, pragmatic software cost estimation. **Improving Software Economics:** Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process. #### **UNIT-II:** **Life cycle phases:** Engineering and production stages, inception, Elaboration, construction, transition phases. **Artifacts of the process:** The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts. #### **UNIT-III:** **Model based software architectures:** A Management perspective and technical perspective. **Work Flows of the process:** Software process workflows, Iteration workflows. Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments. **Iterative Process Planning:** Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration
planning process, Pragmatic planning. #### **UNIT-IV:** **Project Organizations and Responsibilities:** Line-of-Business Organizations, Project Organizations, evolution of Organizations. **Process Automation:** Automation Building blocks, The Project Environment. #### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India # **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** **Project Control and Process instrumentation:** The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. #### **UNIT-V:** Agile Methodology, ADAPTing to Scrum, Patterns for Adopting Scrum, Iterating towards Agility. **Fundamentals of DevOps**: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes #### **Text Books:** - 1. Software Project Management, Walker Royce, PEA, 2005. - 2. Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley. - 3. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb,1st Edition, O'Reilly publications, 2016. - 1. Software Project Management, Bob Hughes, 3/e, Mike Cotterell, TMH - 2. Software Project Management, Joel Henry, PEA - 3. Software Project Management in practice, Pankaj Jalote, PEA, 2005, - 4. Effective Software Project Management, Robert K. Wysocki, Wiley, 2006. - 5. Project Management in IT, Kathy Schwalbe, Cengage #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester MOBILE ADHOC NETWORKS | L | T | P | C | | |--|------------------------|---|---|---|---| | III I cai II Scinestei | MODILE ADMOC NET WORKS | 3 | 0 | 0 | 3 | #### **Course Objectives:** From the course the student will learn - Architect sensor networks for various application setups. - Devise appropriate data dissemination protocols and model links cost. - Understanding of the fundamental concepts of wireless sensor networks and has a basic knowledge of the various protocols at various layers. - Evaluate the performance of sensor networks and identify bottlenecks. **UNIT I: Introduction to Ad Hoc Wireless Networks-** Cellular and Ad Hoc Wireless Networks, Characteristics of MANETs, Applications of MANETs, Issues and Challenges of MANETs, Ad Hoc Wireless Internet, MAC protocols for Ad hoc Wireless Networks-Issues, Design Goals and Classifications of the MAC Protocols. **UNIT II: Routing Protocols for Ad Hoc Wireless Networks-** Issues in Designing a Routing Protocol, Classifications of Routing Protocols, Topology-based versus Position-based Approaches, Issues and design goals of a Transport layer protocol, Classification of Transport layer solutions, TCP over Ad hoc Wireless Networks, Solutions for TCP over Ad Hoc Wireless Networks, Other Transport layer protocols. **UNIT III: Security protocols for Ad hoc Wireless Networks-** Security in Ad hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad hoc Wireless Networks, Cooperation in MANETs, Intrusion Detection Systems. **UNIT IV: Basics of Wireless Sensors and Applications-** The Mica Mote, Sensing and Communication Range, Design Issues, Energy Consumption, Clustering of Sensors, Applications, Data Retrieval in Sensor Networks-Classification of WSNs, MAC layer, Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs. **UNIT V: Security in WSNs-** Security in WSNs, Key Management in WSNs, Secure Data Aggregation in WSNs, Sensor Network Hardware-Components of Sensor Mote, Sensor Network Operating Systems—TinyOS, LA-TinyOS, SOS, RETOS, Imperative LanguagenesC, **Dataflow Style Language**-TinyGALS, Node-Level Simulators, NS-2 and its sensor network extension, TOSSIM. #### **Text Books:** 1.Ad Hoc Wireless Networks – Architectures and Protocols, 1st edition, C. Siva Ram Murthy, B. S. Murthy, Pearson Education, 2004 # MEHRU TECTHOLOGICAL TO THE TEC # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA #### KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** 2.Ad Hoc and Sensor Networks – Theory and Applications, 2nd edition *Carlos Corderio Dharma P.Aggarwal*, World Scientific Publications / Cambridge University Press, March 2006 - 1. Wireless Sensor Networks: An Information Processing Approach, 1st edition, *Feng Zhao, Leonidas Guibas*, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009 - 2. Wireless Ad hoc Mobile Wireless Networks Principles, Protocols and Applications, 1st edition, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008 - 3. Ad hoc Networking, 1st edition, Charles E. Perkins, Pearson Education, 2001 - 4. Wireless Ad hoc Networking, 1st edition, *Shih-Lin Wu, Yu-Chee Tseng*, Auerbach Publications, Taylor & Francis Group, 2007 - 5. Wireless Sensor Networks Principles and Practice, 1st edition, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010 #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester NATURAL LANGUAGE PROCESSING | L | T | P | C | | | |--|------------------------------|---|---|---|---|---| | III I cai II Schiestei | NATURAL LANGUAGE I ROCESSING | 3 | 0 | 0 | 3 | 1 | #### **Course Objectives:** This course introduces the fundamental concepts and techniques of natural language processing (NLP). - Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information. - The course examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches. - Enable students to be capable to describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing. #### **UNIT I:** **INTRODUCTION:** Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance. #### **UNIT II:** **WORD LEVEL ANALYSIS:** Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part- of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models. #### **UNIT III:** **SYNTACTIC ANALYSIS**: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures #### **UNIT IV:** **SEMANTICS AND PRAGMATICS:** Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods. #### **UNIT V:** **DISCOURSE ANALYSIS AND LEXICAL RESOURCES:** Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC). #### **Text Books:** - 1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2ndEdition, Daniel Jurafsky, James H. Martin Pearson Publication, 2014. - 2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, OReilly Media, 2009. - 1. Language Processing with Java and Ling Pipe Cookbook, 1stEdition, Breck Baldwin, Atlantic Publisher, 2015. - 2. Natural Language Processing with Java, 2ndEdition, Richard M Reese, OReilly Media,2015. - 3. Handbook of Natural Language Processing, Second, NitinIndurkhya and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition - 4. Natural Language Processing and Information Retrieval, 3rdEdition, TanveerSiddiqui, U.S. Tiwary, Oxford University Press,2008. #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester BIG DATA ANALYTICS | L | T | P | C | | |---|--------------------|---|---|---|---| | ili i cai ii Scillestei | DIG DATA ANALTTICS | 3 | 0 | 0 | 3 | Course Objectives: This course is aimed at enabling the students to - To provide an overview of an exciting growing field of big data analytics. - To introduce the tools required to manage and analyze big data like Hadoop, NoSQL, Map Reduce, HIVE, Cassandra, Spark. - To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability. - To optimize business decisions and create competitive advantage with Big Data analytics **UNIT I:** big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big
data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics. **UNIT II:** Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer- peer replication, shardingand replication, consistency, relaxing consistency, version stamps, Working with Cassandra, Table creation, loading and reading data. **UNIT III:** Data formats, analyzing data with Hadoop, scaling out, Architecture of Hadoop distributed file system (HDFS), fault tolerance ,with data replication, High availability, Data locality, Map Reduce Architecture, Process flow, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization. Introduction to Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, Logical joins, Window functions, Optimization, Table partitioning, Bucketing, Indexing, Join strategies. **UNIT IV:** Apache spark- Advantages over Hadoop, lazy evaluation, In memory processing, DAG, Spark context, Spark Session, RDD, Transformations- Narrow and Wide, Actions, Data frames ,RDD to Data frames, Catalyst optimizer, Data Frame Transformations, Working with Dates and Timestamps, Working with Nulls in Data, Working with Complex Types, Working with JSON, Grouping, Window Functions, Joins, Data Sources, Broadcast Variables, Accumulators, Deploying Spark- On-Premises Cluster Deployments, Cluster Managers- Standalone Mode, Spark on YARN, Spark Logs, The Spark UI- Spark UI History Server, Debugging and Spark First Aid **UNIT V:** Spark-Performance Tuning, Stream Processing Fundamentals, Event-Time and State full Processing - Event Time, State full Processing, Windows on Event Time- Tumbling Windows, Handling Late Data with Watermarks, Dropping Duplicates in a Stream, KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** Structured Streaming Basics - Core Concepts, Structured Streaming in Action, Transformations on Streams, Input and Output. #### **Text Books:** - 1. Big Data, Big Analytics: Emerging, Michael Minnelli, Michelle Chambers, and AmbigaDhiraj, 1st edition ,2013 - 2. SPARK: The Definitive Guide, Bill Chambers & MateiZaharia, O'Reilley, 2018-first Edition. - 3. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, First edition-2013. - 4. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World Polyglot Persistence", Addison-Wesley Professional, 2012 - 5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012 - 1. "Hadoop Operations", O'Reilley, Eric Sammer, First Edition -2012. - 2. "Programming Hive", O'Reilley, E. Capriolo, D. Wampler, and J. Rutherglen, 2012. - 3. "HBase: The Definitive Guide", O'Reilley, Lars George, September 2011: First Edition.. - 4. "Cassandra: The Definitive Guide", O'Reilley, Eben Hewitt, 2010. - "Programming Pig", O'Reilley, Alan Gates, October 2011: First Edition #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester DISTRIBUTED OPERATING SYSTEM | L | T | P | C | | |---|-------------------------------|---|---|---|---| | III I cai II Scillestei | DISTRIBUTED OF ERATING STSTEM | 3 | 0 | 0 | 3 | #### **Course Objectives:** The main objective of the course is to introduce design issues and different message passing techniques in DOS, distributed systems, RPC implementation and its performance in DOS, distributed shared memory and resource management, distributed file systems and evaluate the performance in terms of fault tolerance, file replication as major factors #### Unit I: #### **Fundamentals:** What is Distributed Computing Systems? Evolution of Distributed Computing System; Distributed Computing System Models; What is Distributed Operating System? Issues in Designing a Distributed Operating System; Introduction to Distributed Computing Environment(DCE). #### **Message Passing:** Introduction, Desirable features of a Good Message Passing System, Issues in PC by Message Passing, Synchronization, Buffering, Multi-datagram Messages, Encoding and Decoding of Message Data, Process Addressing, Failure Handling, Group Communication, Case Study: 4.3 BSD UNIX IPC Mechanism. #### **Unit II: Remote Procedure Calls:** Introduction, The RPC Model, Transparency of RPC, Implementing RPC Mechanism, Stub Generation, RPC Messages, Marshaling Arguments and Results, Server Management, Parameter-Passing Semantics, Call Semantics, Communication Protocols for RPCs, Complicated RPCs, Client-Server Binding, Exception Handling, Security, Some Special Types of RPCs, RPC in Heterogeneous Environments, Lightweight RPC, Optimization for Better Performance, Case Studies: Sun RPC #### **Unit III: Distributed Shared Memory:** Introduction, General Architecture of DSM systems, Design and Implementation Issues of DSM, Granularity, Structure of Shared Memory Space, Consistency Models, Replacement Strategy, Thrashing, Other approaches to DSM, Heterogeneous DSM, Advantages of DSM. Synchronization: Introduction, Clock Synchronization, Event Ordering, Mutual Exclusion, Dead Lock, Election Algorithms #### **Unit IV: Resource Management:** Introduction, Desirable Features of a Good Global Scheduling Algorithm, Task Assignment Approach, Load – Balancing Approach, Load – Sharing Approach Process Management: Introduction, Process Migration, Threads. KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Unit V: Distributed File Systems:** Introduction, Desirable Features of a Good Distributed File System, File models, File—Accessing Models, File—Sharing Semantics, File—Caching Schemes, File Replication, Fault Tolerance, Atomic Transactions and Design Principles. #### **Text books** 1. Pradeep. K. Sinha: Distributed Operating Systems: Concepts and Design, PHI, 2007. - 1. Andrew S. Tanenbaum: Distributed Operating Systems, Pearson Education, 2013. - 2. Ajay D. Kshemkalyani and MukeshSinghal, Distributed Computing: Principles, Algorithms and Systems, Cambridge University Press, 2008 - 3. SunitaMahajan, Seema Shan, "Distributed Computing", Oxford University Press,2015 #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester CLOUD COMPUTING LAB | L | T | P | C | | | |--|----------------------|---|---|---|-----|---| | III I cai II Schiestei | CLOUD COMI OTING LAD | 0 | 0 | 3 | 1.5 | Ì | #### **Course Objectives:** - To introduce the various levels of services offered by cloud. - To give practical knowledge about working with virtualization and containers. - To introduce the advanced concepts such as serverless computing and cloud simulation. #### **Course Outcomes:** At the end of the course, the student should be able to - Demonstrate various service types, delivery models and technologies of a cloud computing environment. - Distinguish the services based on virtual machines and containers in the cloud offerings. - Assess the challenges associated with a cloud-based application. - Discuss advanced cloud concepts such as serverless computing and cloud simulation. - Examine various programming paradigms suitable to solve real world and scientific problems using cloud services. #### **List of Experiments:** - 1. Lab on web services - 2. Lab on IPC, messaging, publish/subscribe - 3. Install Virtual Box/VMware Workstation with different flavours of Linux or windows OS on top of windows8 or above. - 4. Install a C compiler in the virtual machine created using Virtual Box and execute Simple Programs. - 5. Create an Amazon EC2 instance and set up a web-server on the instance and associate an IP address with the instance. In the process, create a security group allowing access to port 80 on the instance. OR - 6. Do the same with OpenStack - 7. Install Google App Engine. Create a hello world app and other simple web applications using python/java. - 8. Start a Docker container and set up a web-server (e.g. apache2 or Python based Flask micro web framework) on the instance. Map the host directory as a data volume for the container. - 9. Find a procedure to transfer the files from one virtual machine to another virtual machine. Similarly, from one container to another container. - 10. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version) - 11. Install Hadoop single node cluster and run simple applications like word count. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India # **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 12. Utilize OpenFaaS Serverless computing framework and demonstrate basic event driven function invocation. - 13. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim. #### **Text Books:** - 1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, Shivananda Poojara, Satish N. Srirama, McGraw Hill, 2024. - 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012. - 1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018. - 2. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011. - 3. Online documentation and tutorials from cloud service providers (e.g. AWS, Google App Engine) - 4. Docker, Reference documentation, https://docs.docker.com/reference/ - 5. OpenFaaS, Serverless Functions Made Simple,
https://docs.openfaas.com/ #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | CRYPTOGRAPHY & NETWORK | L | T | P | C | |----------------------|------------------------|---|---|---|-----| | | SECURITY LAB | 0 | 0 | 3 | 1.5 | #### **Course Objectives:** - To learn basic understanding of cryptography, how it has evolved, and some key encryption techniques used today. - To understand and implement encryption and decryption using Ceaser Cipher, Substitution Cipher, Hill Cipher. #### **List of Experiments:** - 1. Write a C program that contains a string (char pointer) with a value \Hello World'. The program should XOR each character in this string with 0 and displays the result. - 2. Write a C program that contains a string (char pointer) with a value \Hello World'. The program should AND or and XOR each character in this string with 127 and display the result - 3. Write a Java program to perform encryption and decryption using the following algorithms: - a) Ceaser Cipher - b) Substitution Cipher - c) Hill Cipher - 4. Write a Java program to implement the DES algorithm logic - 5. Write a C/JAVA program to implement the BlowFish algorithm logic - 6. Write a C/JAVA program to implement the Rijndael algorithm logic. - 7. Using Java Cryptography, encrypt the text "Hello world" using BlowFish. Create your own key using Java key tool. - 8. Write a Java program to implement RSA Algorithm - 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. Consider the end user as one of the parties (Alice) and the JavaScript application as other party (bob). - 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA. #### KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | SOFT SKILLS | L | T | P | C | |-----------------------|-------------|---|---|---|---| | THE TEAT IT SCHIESTER | SOFT SKILLS | 0 | 1 | 2 | 2 | #### **Course Objectives:** - To equip the students with the skills to effectively communicate in English - To train the students in interview skills, group discussions and presentation skills - To motivate the students to develop confidence - To enhance the students' interpersonal skills - To improve the students' writing skills #### UNIT - I **Analytical Thinking & Listening Skills:** Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), Self – Analysis, Developing Positive Attitude, Perception. **Communication Skills:** Verbal Communication; Non Verbal Communication (Body Language) #### UNIT - II **Self-Management Skills:** Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities Etiquette: Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette #### UNIT - III **Standard Operation Methods:** Basic Grammars, Tenses, Prepositions, Pronunciation, Letter Writing; Note Making, Note Taking, Minutes Preparation, Email & Letter Writing #### **UNIT-IV** **Job-Oriented Skills:** Group Discussion, Mock Group Discussions, Resume Preparation, Interview Skills, Mock Interviews #### **UNIT-V** **Interpersonal relationships**: Introduction, Importance, Types, Uses, Factors affecting interpersonal relationships, Accommodating different styles, Consequences of interpersonal relationships #### **Text books:** - 1. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011. - 2. S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010. #### Reference books: 1. R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India # B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS) 2. Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011. #### **E-resources:** 1. https://swayam-plus.swayam2.ac.in/courses/course-details?id=P CAMBR 01 #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | III Year II Semester | TECHNICAL PAPER WRITING & IPR | L | T | P | C | | |-----------------------|-------------------------------|---|---|---|---|--| | THE TEAT IT SCHIESTER | TECHNICAL FALER WRITING & IFR | 2 | 0 | 0 | - | | **Course Objective :** The course will explain the basic related to writing the technical reports and understanding the concepts related to formatting and structuring the report. This will help students to comprehend the concept of proofreading, proposals and practice #### Unit I: **Introduction:** An introduction to writing technical reports, technical sentences formation, using transitions to join sentences, Using tenses for technical writing. **Planning and Structuring:** Planning the report, identifying reader(s), Voice, Formatting and structuring the report, Sections of a technical report, Minutes of meeting writing. #### **Unit II:** **Drafting report and design issues:** The use of drafts, Illustrations and graphics. **Final edits:** Grammar, spelling, readability and writing in plain English: Writing in plain English, Jargon and final layout issues, Spelling, punctuation and Grammar, Padding, Paragraphs, Ambiguity. #### **Unit III:** **Proofreading and summaries:** Proofreading, summaries, Activities on summaries. **Presenting final reports:** Printed presentation, Verbal presentation skills, Introduction to proposals and practice. #### **Unit IV: Using word processor:** Adding a Table of Contents, Updating the Table of Contents, Deleting the Table of Contents, Adding an Index, Creating an Outline, Adding Comments, Tracking Changes, Viewing Changes, Additions, and Comments, Accepting and Rejecting Changes, Working with Footnotes and Endnotes, Inserting citations and Bibliography, Comparing Documents, Combining Documents, Mark documents final and make them read only., Password protect Microsoft Word documents., Using Macros, #### Unit V: **Nature of Intellectual Property:** Patents, Designs, Trade and Copyright. Process of **Patenting and Development:** technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property #### **Text Books:** - 1. Kompal Bansal & Parshit Bansal, "Fundamentals of IPR for Beginner's", 1st Ed., BS Publications, 2016. - 2. William S. Pfeiffer and Kaye A. Adkins, "Technical Communication: A Practical Approach", Pearson. - 3. Ramappa, T., "Intellectual Property Rights Under WTO", 2nd Ed., S Chand, 2015. # HERU TECHNOLOGICAL THE STATE OF # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Reference Books:** - 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011. - 2. Day R, How to Write and Publish a Scientific Paper, Cambridge University Press(2006) #### **E-resources:** - 1. https://www.udemy.com/course/reportwriting/ - 2. https://www.udemy.com/course/professional-business-english-and-technical-report-writing/ - 3. https://www.udemy.com/course/betterbusinesswriting/ #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester DEEP LEARNING | L | T | P | С | | |----------------------------------|---------------|---|---|---|--------| | 1 V 1 Cai 1 Schiester | DEEL BEARTING | 3 | 0 | 0 | C
3 | **Course Objectives:** The main objective of the course is to make students: - Learn deep learning methods for working with sequential data, - Learn deep recurrent and memory networks, - Learn deep Turing machines, - Apply such deep learning mechanisms to various learning problems. - Know the open issues in deep learning, and have a grasp of the current research directions. #### **UNIT I:** **Fundamentals of Deep Learning:** Artificial Intelligence, History of Machine learning: Probabilistic Modeling, Early Neural Networks, Kernel Methods, Decision Trees, Random forests and Gradient Boosting Machines, **Fundamentals of Machine Learning:** Four Branches of Machine Learning, Evaluating Machine learning Models, Overfitting and Underfitting. **[Text Book 2]** **UNIT II: Introducing Deep Learning:** Biological and Machine Vision, Human and Machine Language, Artificial Neural Networks, Training Deep Networks, Improving Deep Networks. [Text Book3] **UNIT III: Neural Networks:** Anatomy of Neural Network, Introduction to Keras: Keras, TensorFlow, Theano and CNTK, Setting up Deep Learning Workstation, Classifying Movie Reviews: Binary Classification, Classifying newswires: Multiclass Classification. **[Text Book 2]** #### **UNIT IV:** **Convolutional Neural Networks:** Nerual Network and Representation Learing, Convolutional Layers, Multichannel Convolution Operation, **Recurrent Neural Networks:** Introduction to RNN, RNN Code, PyTorch Tensors: Deep Learning with PyTorch, CNN in PyTorch. [Text Book 3] #### **UNIT V:** **Interactive Applications of Deep Learning:** Machine Vision, Natural Language processing, Generative Adversal Networks, Deep Reinforcement Learning. [Text Book 1] **Deep Learning Research:** Autoencoders, Deep Generative Models: Boltzmann Machines Restricted Boltzmann Machines, Deep Belief Networks. [Text Book 1] #### **Text Books:** - 1. Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016 - 2. Deep Learning with Python Francois Chollet, Released December 2017, #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** Publisher(s): Manning Publications, ISBN: 9781617294433 - 3. Deep
Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence Jon Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821 - 4. Deep Learning from Scratch Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc., ISBN: 9781492041412 #### **Reference Books:** - 1. Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009. - 2. Matrix Computations, Golub, G.,H., and Van Loan, C.,F, JHU Press, 2013. - 3. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004. #### Web Link: 1. Swayam NPTEL: Deep Learning: https://onlinecourses.nptel.ac.in/noc22 cs22/preview # KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester | HUMAN RESOURCES & PROJECT | L | T | P | C | |--------------------|---------------------------|---|---|---|---| | | MANAGEMENT | 3 | 0 | 0 | 3 | #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester | SOFTWARE ARCHITECTURE & | L | T | P | C | |--------------------|-------------------------|---|---|---|---| | | DESIGN PATTERNS | 3 | 0 | 0 | 3 | #### **Course Outcomes** - Understand the basic concepts to identify state behavior of real world objects - Apply Object Oriented Analysis and Design concepts to solve complex problems - Construct various UML models using the appropriate notation for specific problem context - Design models to Show the importance of systems analysis and design in solving complex problems using case studies - Study of Pattern Oriented approach for real world problems #### UNIT - I **Introduction**: What is a design pattern? Describing design patterns, the catalog of design pattern, organizing the catalog, how design patterns solve design problems, how to select a design pattern, how to use a design pattern What is object oriented development? key concepts of object oriented design other related concepts, benefits and drawbacks of the paradigm #### UNIT – II **Analysis a System:** Overview of the analysis phase, stage 1 gathering the requirements functional requirements specification, defining conceptual classes and relationships, using the knowledge of the domain Design and Implementation, discussions and further reading #### UNIT - III **Design Pattern Catalog:** Structural patterns, Adapter, bridge, composite, decorator, facade, flyweight, proxy. #### UNIT – IV **Interactive systems and the MVC architecture:** Introduction The MVC architectural pattern, analyzing a simple drawing program designing the system, designing of the subsystems, getting into implementation, implementing undo operation drawing incomplete items, adding a new feature pattern based solutions #### UNIT - V **Designing with Distributed Objects:** Client server system, java remote method invocation, implementing an object oriented system on the web, Web services (SOAP, Restful), Enterprise Service Bus #### **Text Books:** 1. Object oriented analysis, design and implementation, brahma dathan, sarnath rammath , universities press,2013 ### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** 2. Design patterns, Erich Gamma, Richard helan , Ralph johman , john vlissides, PEARSON Publication, 2013 - 1. Frank Bachmann, Regine Meunier, Hans Rohnert "Pattern Oriented Software Architecture" Volume 1, 1996. - 2. William J Brown et al., "Anti Patterns: Refactoring Software, Architectures and Projects in Crisis", John Wiley, 1998 #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester BLOCK CHAIN TECHNOLOGY | L | T | P | C | | | |---|-------------------------|---|---|---|---|---| | IV I Cal I Schiester | block chant recintologi | 3 | 0 | 0 | 3 | 1 | #### **Course Objectives:** - 1. To learn the fundamentals of Block Chain and various types of block chain and consensus mechanism. - 2. To understand public block chain system, Private block chain system and consortium block chain. - 3. Able to know the security issues of block chain technology. #### UNIT - I: **Fundamentals of Block chain:** Introduction, Origin of Block chain, Block chain Solution, Components of Block chain, Block in a Block chain, The Technology and the Future. **Block chain Types and Consensus Mechanism:** Introduction, Decentralization and Distribution, Types of Block chain, Consensus Protocol. **Cryptocurrency:** Bitcoin, Altcoin and Token: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage. #### UNIT – II: **Public Block chain System:** Introduction, Public Block chain, Popular Public Block chains, The Bitcoin Block chain, Ethereum Block chain. **Smart Contracts:** Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry. #### **UNIT – III:** **Private Block chain System:** Introduction, Key Characteristics of Private Block chain, Private Block chain, Private Block chain Examples, Private Block chain and Open Source, Ecommerce Site Example, Various Commands (Instructions) in E-commerce Block chain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Block chain, Byzantine Fault, Multichain. Consortium Block chain: Introduction, Key Characteristics of Consortium Block chain, Need of Consortium Block chain, Hyperledger Platform, Overview of Ripple, Overview of Corda. **Initial Coin Offering:** Introduction, Block chain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms. #### **UNIT - IV:** **Security in Block chain:** Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Block chain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Block chain Smart Contract (DApp), Security Aspects in Hyperledger Fabric. #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** **Applications of Block chain:** Introduction, Block chain in Banking and Finance, Block chain in Education, Block chain in Energy, Block chain in Healthcare, Block chain in Realestate, Block chain in Supply Chain, The Block chain and IoT. Limitations and Challenges of Block chain. #### UNIT - V: Block chain Case Studies: Case Study 1 – Retail, Case Study 2 – Banking and Financial Services, Case Study 3 – Healthcare, Case Study 4 – Energy and Utilities. Block chain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Block chain. Block chain platform using Hyperledger Fabric: Introduction, Components of Hyperledger Fabric Network, Chain codes from Developer.ibm.com, Block chain Application Using Fabric Java SDK. #### Text book: 1. "Block chain Technology", Chandramouli Subramanian, Asha A.George, Abhilasj K A and Meena Karthikeyan, Universities Press. - 1. Block chain Blue print for Economy, Melanie Swan, SPD Oreilly. - 2. Block chain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gauar, Pearson Addition Wesley #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester | AUGMENTED REALITY & VIRTUAL | L | T | P | C | Ī | |--------------------|-----------------------------|---|---|---|---|---| | | REALITY | 3 | 0 | 0 | 3 | Ì | #### **Objectives:** - Provide a foundation to the fast growing field of AR and make the students aware of the various AR concepts. - To give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems. #### UNIT - I **Introduction to Augmented Reality:** Augmented Reality - Defining augmented reality, history of augmented reality, Examples, Related fields **Displays:** Multimodal Displays, Visual Perception, Requirements and Characteristics, Spatial Display Model, Visual Displays **Tracking:** Tracking, Calibration, and Registration, Coordinate Systems, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors #### UNIT - II **Computer Vision for Augmented Reality:** Marker Tracking, Multiple-Camera Infrared Tracking, Natural Feature Tracking by Detection, Outdoor Tracking. **Interaction:** Output Modalities, Input Modalities, Tangible Interfaces, Virtual User Interfaces on Real Surfaces, Augmented Paper, Multi-view Interfaces, Haptic Interaction **Software Architectures:** AR Application Requirements, Software Engineering Requirements, Distributed Object Systems, Dataflow, Scene Graphs #### **UNIT - III** **Introduction to Virtual Reality:** Defining Virtual Reality, History of VR, Human Physiology and Perception **The Geometry of Virtual Worlds:** Geometric Models, Axis-Angle Representations of Rotation, Viewing Transformations **Light and Optics:** Basic Behavior of Light, Lenses, Optical Aberrations, The Human Eye, Cameras, Displays #### **UNIT - IV** **The Physiology of Human Vision:** From the Cornea to Photoreceptors, From Photoreceptors to the Visual Cortex, Eye Movements, Implications for VR **Visual Perception:** Visual Perception - Perception of Depth, Perception of Motion, **Perception of Color Visual Rendering:** Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates, Immersive Photos and Videos #### UNIT - V #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** **Motion in Real and Virtual Worlds:** Velocities and
Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection Interaction: Motor Programs and Remapping, Locomotion, Social Interaction **Audio:** The Physics of Sound, The Physiology of Human Hearing, Auditory Perception, Auditory Rendering #### **Text Books:** - 1. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016), ISBN-10: 9332578494 - 2. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016 - 1. Allan Fowler-AR Game Development , 1st Edition, A press Publications, 2018, ISBN 978-1484236178 - 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 - 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009 - 4. Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN:9781491962381 - 5. Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0 - 6. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005 #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester | INTERNET OF THINGS | L T | P | C | | | |----------------------|--------------------|-----|---|---|---|--| | IV I cal I Schicstel | INTERNET OF THINGS | 3 | 0 | 0 | 3 | | #### **Course Objectives:** From the course the student will learn - the application areas of IOT - the revolution of Internet in Mobile Devices, Cloud & Sensor Networks - building blocks of Internet of Things and characteristics #### **UNIT I:** Predecessors of IoT: Introduction, Wireless Sensor Networks, Machine-to-Machine Communications, Cyber Physical Systems Emergence of IoT: Introduction, Evolution of IoT, Enabling IoT and the Complex Interdependence of Technologies, IoT Networking Components, Addressing Strategies in IoT #### **UNIT II:** IoT Sensing and Actuation: Introduction, Sensors, Sensor Characteristics, Sensorial Deviations, Sensing Types, Sensing Considerations, Actuators, Actuator Types, Actuator Characteristics IoT Processing Topologies and Types: Data Format, Importance of Processing in IoT, Processing Topologies, IoT Device Design and Selection Considerations, Processing Offloading. #### **UNIT III:** IoT Connectivity Technologies: Introduction, IEEE 802.15.4, Zigbee, Thread, ISA100.11A, WirelessHART, RFID, NFC,DASH7, Z-Wave, Weightless, Sigfox, LoRa, NB-IT, Wi-Fi, Bluetooth IoT Communication Technologies: Introduction, Infrastructure Protocols, Discovery Protocols, Data Protocols, Identification Protocols, Device Management, Semantic Protocols. #### **UNIT IV:** IoT Interoperability: Introduction, Standards, Frameworks Fog Computing and Its Applications: Introduction, View of Fog Computing Architecture, Fog Computing in IoT, Selected Applications of Fog Computing #### **UNIT V:** Paradigms, Challenges, and the Future: Introduction, Evolution of New IoT Paradigms, Challenges Associated with IoT, Emerging Pillars of IoT IoT Case Studies: Agricultural IoT, Vehicular IoT KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Text Books:** - 1. Introduction to IoT, Sudip Misra, Anandarup Mukhaerjee, Arjit Roy, Cambridge University Press, 2021 - 2. Internet of Things: Architecture, Design Principles and Applications, Rajkamal, McGraw Hill Higher Education - 1. Fog and Edge Computing: Principles and Paradigms, <u>Rajkumar Buyya</u> (Editor), <u>Satish narayana Srirama</u> (Editor), <u>ISBN</u>: 978-1-119-52498-4, January 2019 - 2. Getting Started with the Internet of Things, CunoPfister, Oreilly #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester AGILE METHODOLOGIES | L | T | P | C | | | |--|---------------------|---|---|---|---|--| | IV I cal I Schicstel | AGILE METHODOLOGIES | 3 | 0 | 0 | 3 | | #### **Course Objectives:** The main objectives of this course are to introduce the important concepts of Agile software development Process, emphasize the role of stand-up meetings in software collaboration, impart the knowledge on values and principles in understanding agility #### UNIT I: Learning Agile: Getting Agile into your brain, Understanding Agile values, No Silver Bullet, Agile to the Rescue, adding Agile makes a difference. A fractured perspective, How a fractured perspective causes project problems. The Agile Manifesto, Purpose behind Each Practice. Individuals and Interactions Over Processes and Tools, Working Software over Comprehensive Documentation, Customer Collaboration over Contract Negotiation, Responding to Change over Following a Plan, Principles over Practices. Understanding the Elephant, Methodologies Help You Get It All in Place at Once, Where to Start with a New Methodology. #### **UNIT II:** **The Agile Principles:** The 12 Principles of Agile Software, The Customer Is Always Right, "Do As I Say, Not As I Said". Delivering the Project, Better Project Delivery for the Ebook Reader Project. Communicating and Working Together, Better Communication for the Ebook Reader Project. Project Execution—Moving the Project Along, A Better Working Environment for the Ebook Reader Project Team. Constantly Improving the Project and the Team. The Agile Project: Bringing All the Principles Together #### **UNIT III:** SCRUM and Self-Organizing Teams: The Rules of Scrum, Act I: I Can Haz Scrum?, Everyone on a Scrum Team owns the Project, The Scrum Master Guides the Team's Decisions, The Product Owner Helps the Team Understand the Value of the Software, Everyone Owns the Project, Scrum Has Its Own Set of Values ,Status Updates Are for Social Networks!, The Whole Team Uses the Daily Scrum, Feedback and the Visibility-Inspection-Adaptation Cycle, The Last Responsible Moment, How to Hold an Effective Daily Scrum. Sprinting into a Wall, Sprints, Planning, and Retrospectives, Iterative or Incremental?, The Product Owner Makes or Breaks the Sprint, Visibility and Value, How to Plan and Run an Effective Scrum Sprint Scrum Planning And Collective Commitment: Not Quite Expecting the Unexpected, User Stories, Velocity, and Generally Accepted Scrum Practices, Make Your Software Useful, User Stories Help Build Features Your Users Will Use, Conditions of Satisfaction, Story Points and Velocity, Burndown Charts, Planning and Running a Sprint Using Stories, Points, Tasks, and a Task Board. Victory Lap, Scrum Values Revisited, Practices Do Work Without the Values (Just Don't Call It Scrum), Is Your Company's Culture Compatible with Scrum Values. #### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **UNIT IV:** XP And Embracing Change: Going into Overtime, The Primary Practices of XP, Programming Practices, Integration Practices, Planning Practices, Team Practices, Why Teams Resist Changes, and How the Practices Help. The Game Plan Changed, but We're Still Losing, The XP Values Help the Team Change Their Mindset, XP Helps Developers Learn to Work with Users, Practices Only "Stick" When the Team Truly Believes in Them, An Effective Mindset Starts with the XP Values, The XP Values, Paved with Good Intentions. The Momentum Shifts, Understanding the XP Principles Helps You Embrace Change, The Principles of XP, XP Principles Help You Understand Planning, XP Principles Help You Understand Practices—and Vice Versa, Feedback Loops. XP, Simplicity, and Incremental Design: Code and Design, Code Smells and Antipatterns (or, How to Tell If You're Being Too Clever), XP Teams Look for Code Smells and Fix Them, Hooks, Edge Cases, and Code That Does Too Much. Make Code and Design Decisions at the Last Responsible Moment, Fix Technical Debt by Refactoring Mercilessly, Use Continuous Integration to Find Design Problems, Avoid Monolithic Design, Incremental Design and the Holistic XP Practices. Teams Work Best When They Feel Like They Have Time to Think, Team Members Trust Each Other and Make Decisions Together. The XP Design, Planning, Team, and Holistic Practices Form an Ecosystem Incremental Design Versus Designing for Reuse, When Units Interact in a Simple Way, the System Can Grow Incrementally, Great Design Emerges from Simple Interactions, Final Score. #### **UNIT V:** Lean, Eliminating Waste, and Seeing the whole: Lean Thinking, Commitment, Options Thinking, and Set-Based Development, Creating Heroes and Magical Thinking. Eliminate Waste, Use a Value Stream Map to Help See Waste Clearly, Gain a Deeper Understanding of the Product, See the Whole, Find the Root Cause of Problems That You Discover. Deliver As Fast As Possible, Use an Area Chart to Visualize Work in Progress, Control Bottlenecks by Limiting Work in Progress. Kanban, Flow, and Constantly Improving: The Principles of Kanban, Find a Starting Point and Evolve Experimentally from There. Stories Go into the System; Code Comes Out, Improving Your Process with Kanban, Visualize the Workflow, Limit Work in Progress. Measure and Manage Flow, Managing Flow with WIP Limits Naturally Creates Slack. Make Process Policies Explicit So Everyone Is on the Same Page. Emergent Behavior with Kanban. The Agile Coach: Coaches Understand Why People Don't Always Want to Change. The Principles of Coaching. #### Text Books: 1. Andrew Stellman, Jill Alison Hart, Learning Agile, O'Reilly, 2015. - 1. Andrew stellman, Jennifer Green, Head first Agile, O'Reilly, 2017. - 2. Rubin K, Essential Scrum: A practical guide to the most popular Agile process, Addison-Wesley, 2013 # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India
B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS) #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester | GENERATIVE AI | L | T | P | C | |-----------------------|---------------|---|---|---|---| | 1 V 1 Cai 1 Schiester | GENERATIVE AI | 3 | 0 | 0 | 3 | #### **Course Objectives:** - Understand the basics of Generative AI. - Know the basics of Text Generation. - Understand the process of generating videos. - Know about GAN and its variants. #### UNIT I: Introduction To Gen Ai: Historical Overview of Generative modelling, Difference between Gen AI and Discriminative Modeling, Importance of generative models in AI and Machine Learning, Types of Generative models, GANs, VAEs, autoregressive models and Vector quantized Diffusion models, Understanding if probabilistic modeling and generative process, Challenges of Generative Modeling, Future of Gen AI, Ethical Aspects of AI, Responsible AI, Use Cases. #### **UNIT II:** Generative Models For Text: Language Models Basics, Building blocks of Language models, Transformer Architecture, Encoder and Decoder, Attention mechanisms, Generation of Text, Models like BERT and GPT models, Generation of Text, Autoencoding, Regression Models, Exploring ChatGPT, Prompt Engineering: Designing Prompts, Revising Prompts using Reinforcement Learning from Human Feedback (RLHF), Retrieval Augmented Generation, Multimodal LLM, Issues of LLM like hallucination. #### **UNIT III:** Generation of Images: Introduction to Generative Adversarial Networks, Adversarial Training Process, Nash Equilibrium, Variational Autoencoders, Encoder-Decoder Architectures, Stable Diffusion Models, Introduction to Transformer-based Image Generation, CLIP, Visual Transformers ViT- Dall-E2 and Dall-E3, GPT-4V, Issues of Image Generation models like Mode Collapse and Stability. #### **UNIT IV:** Generation of Painting, Music, and Play: Variants of GAN, Types of GAN, Cyclic GAN, Using Cyclic GAN to Generate Paintings, Neural Style Transfer, Style Transfer, Music Generating RNN, MuseGAN, Autonomous agents, Deep Q Algorithm, Actor-critic Network. #### **UNIT V:** Open Source Models And Programming Frameworks: Training and Fine tuning of Generative models, GPT 4 All, Transfer learning and Pretrained models, Training vision models, Google Copilot, Programming LLM, LangChain, Open Source Models, Llama, Programming for TimeSformer, Deployment, Hugging Face. # WEARD TECHNOLOGICAL THE PROPERTY OF PROPER ### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** #### **Text Books:** 1. Denis Rothman, "Transformers for Natural Language Processing and Computer Vision", Third Edition , Packt Books, 2024 - 1. David Foster, "Generative Deep Learning", O'Reily Books, 2024. - 2. Altaf Rehmani, "Generative AI for Everyone", BlueRose One, 2024. #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester COMPUTER VISION | L | T | P | C | | | |------------------------------------|------------------|---|---|---|---|---| | 1 V 1 Cal 1 Schicster | COMITOTER VISION | 3 | 0 | 0 | 3 | l | #### **Course Objectives:** - To understand the Fundamental Concepts related to sources, shadows and shading - To understand the Geometry of Multiple Views #### UNIT -I: CAMERAS: Pinhole Cameras Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color. #### **UNIT-II**: Linear Filters:Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge Detection:Noise, Estimating Derivatives, Detecting Edges Texture0:Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture. #### **UNIT-III**: The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering, #### **UNIT-IV**: Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples #### **UNIT-V**: Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case study: Mobile Robot Localization Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case study: Registration In Medical Imaging Systems, Curved Surfaces and Alignment. #### **Text Books:** 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. - 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013. - 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008. 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011. #### KAKINADA - 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester CYBE | CYBER PHYSICAL SYSTEMS | L | T | P | C | | |-------------------------|------------------------|---|---|---|---|--| | IV I cal I Schiester | CIDERTHISICAL SISTEMS | 3 | 0 | 0 | 3 | | #### **Course Objectives:** The main objectives of the course are to understand the core principles behind Cyber Physical Systems, Identify Security mechanisms of Cyber physical system, Understand Synchronization in Distributed Cyber-Physical Systems #### **UNIT I:** **Symbolic Synthesis for Cyber-Physical Systems:** Introduction and Motivation, Basic Techniques - Preliminaries, Problem Definition, Solving the Synthesis Problem, Construction of Symbolic Models, Advanced Techniques: Construction of Symbolic Models, Continuous-Time Controllers, Software Tools #### **UNIT II:** **Security of Cyber-Physical Systems:** Introduction and Motivation, Basic Techniques - Cyber Security Requirements, Attack Model, Countermeasures, Advanced Techniques: System Theoretic Approaches #### **UNIT III:** **Synchronization in Distributed Cyber-Physical Systems:** Challenges in Cyber-Physical Systems, A Complexity-Reducing Technique for Synchronization, Formal Software Engineering, Distributed Consensus Algorithms, Synchronous Lockstep Executions, Time-Triggered Architecture, Related Technology, Advanced Techniques #### **UNIT IV:** **Real-Time Scheduling for Cyber-Physical Systems:** Introduction and Motivation, Basic Techniques - Scheduling with Fixed Timing Parameters, Memory Effects, Multiprocessor/Multicore Scheduling, Accommodating Variability and Uncertainty #### **UNIT V:** **Model Integration in Cyber-Physical Systems:** Introduction and Motivation, Causality, Semantic Domains for Time, Interaction Models for Computational Processes, Semantics of CPS DSMLs, Advanced Techniques, ForSpec, The Syntax of CyPhyML, Formalization of Semantics, Formalization of Language Integration. #### **Text Books:** - 1. Raj Rajkumar, Dionisio De Niz, and Mark Klein, Cyber-Physical Systems, Addison-Wesley Professional, 2016 - 2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press # KAKINADA – 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** - 1. E.A.Lee, Sanjit Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems Approach, MIT Press - 2. Andre Platzer, Logical Foundations of Cyber-Physical Systems, (2e), Springer Publishing, 2018 # KAKINADA – 533 003, Andhra Pradesh, India **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester PROMPT ENGINEERING | L | T | P | C | | |---------------------------------------|----------------------|---|---|---|---| | 1 V 1 Cai 1 Schiester | I ROMI I ENGINEERING | 0 | 1 | 2 | 2 | #### KAKINADA - 533 003, Andhra Pradesh, India #### **B.Tech CSE (R23-COURSE STRUCTURE & SYLLABUS)** | IV Year I Semester CONSTITUTION OF INDIA | CONSTITUTION OF INDIA | L | T | P | C | | |--|-----------------------|---|---|-----|---|--| | | CONSTITUTION OF INDIA | 2 | 0 | 0 0 | - | | #### **Course Objectives:** - Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective. - To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism. - To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution. **UNIT-I: History of Making of the Indian Constitution:** History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution- Preamble, Salient, Features **UNIT-II:
Contours of Constitutional Rights & Duties:** Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties. **UNIT–III: Organs of Governance:** Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, **Executive-** President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions **UNIT-IV: Local Administration:** District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy **UNIT-V: Election Commission:** Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women. #### **Text Books:** - 1. The Constitution of India, 1st Edition, (Bare Act), Government Publication, 1950 - 2. Framing of Indian Constitution, 1st Edition, Dr. S. N. Busi, Dr. B. R. Ambedkar 2015 #### **Reference Books:** 1. Indian Constitution Law, 7th Edition, M. P. Jain, Lexis Nexis, 2014